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Figure 1: Visual Lyrics interface. The system analyzes a song’s audio and language features to suggest words that can be

highlighted with image , animation , or visual stylizations. On the Annotation Panel (left), suggestions appear as annotations

over lyrics (a). The user can edit the annotations to steer the creative direction of the lyric video. The Generation Panel (right)
displays generated animated scenes for each line of lyrics (b). The user can see intermediate LLM instructions for creating the
images, animations, and visuals (c). The user can regenerate new instructions or edit them manually for finegrained control.

Abstract

Animated lyric videos transform song lyrics into dynamic visual
experiences, offering a powerful medium for artistic expression and
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audience engagement. However, creating these videos is challeng-
ing, requiring expertise in audio, typography, graphic design, and
animation, making it inaccessible to novices. To address this chal-
lenge, we introduce Visual Lyrics, a proof-of-concept system for
generating animated lyric videos controlled with an augmented text
editor interface. We examined existing lyric videos to distill a tax-
onomy and design guidelines, informing the design of Visual Lyrics.
Our key insight is a multimodal music analysis pipeline based on
the taxonomy and leveraging LLM’s strong natural language un-
derstanding and code generation capabilities to synthesize creative
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and semantically meaningful animations. We collected a dataset of
over 300 code-driven creative text animations to serve as inspira-
tion for our LLM-driven pipeline, which we open source. In a user
study, Visual Lyrics enabled novices to easily create high-quality
animated lyric videos with high ratings of enjoyment, inspiration,
and exploration.
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1 Introduction

An animated lyric video transforms song lyrics into dynamic visual
experiences, serving as a powerful medium for artistic expression
and audience engagement. These videos have steadily grown in pop-
ularity, driven by music artists and content creators on platforms
like YouTube and TikTok.

However, creating these animations remains a challenging en-
deavor requiring expertise in multiple domains, such as audio, ty-
pography, graphic design, and animation. Current approaches often
involve manual animation in tools like After Effects [1], which is
time-consuming (often spending hours to create a few seconds of
animation) and requires significant technical skill to achieve quality
results, making it inaccessible to many content creators.

Many creators attempt to streamline this process through tem-
plates or preset animations [3, 4], but these solutions often produce
generic “karaoke-style” captions that fail to reflect the meaning of
the lyrics or the emotional tone of the song. Meanwhile, previous
research has mainly focused on smaller, well-defined parts of the
problem rather than the full challenge of creating animated lyric
videos. For example, some systems can find optimal placements
of lyrics on top of videos [30], while others support animating
graphics design elements like logos or icons [29, 39]. Creating a
compelling lyric video involves several complex tasks: interpreting
the linguistic meaning and emotional tone of the lyrics, synchro-
nizing animations precisely with the musical timing, maintaining
visual coherence across multiple scenes, and generating diverse,
creative effects that avoid repetition. An end-to-end generation
system that can provide support across the many stages remains
largely underexplored.

To address this gap, we present Visual Lyrics, a proof-of-concept
system for generating animated lyric videos controlled with an
augmented text editor interface. Our key insight is to leverage the
reasoning and code-generation capabilities of large language mod-
els (LLMs) [17] to create animations that are both highly creative
and semantically aligned with the song. Unlike prior approaches
that rely on fixed templates or constrained effect libraries, Visual
Lyrics uses LLM-driven multimodal reasoning to interpret both
language and auditory features. This enables the system to under-
stand not only what the lyrics say but also how they are expressed
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through rhythm, mood, and emphasis. By combining these anal-
yses with code generation, Visual Lyrics can produce arbitrary
animation effects using flexible web technologies such as HTML,
CSS, and JavaScript. This approach enables much richer effects that
adapt to the unique character of each song. Furthermore, using
LLM allows us to simplify the authoring experience through nat-
ural language. Timeline-heavy solutions such as After Effects [1]
and Keyframer [39] are primarily designed for expert users. Visual
Lyrics enables novice designers to describe their intent in words.

Creating animated lyric videos is an art form. While Visual Lyrics
automatically generates high-quality animated lyric videos, we view
them as rough drafts and believe there is still room to improve them
with human input. The interface allows the user to have finegrained
control over how to stylize or animate each word through an aug-
mented layer over the lyric transcript. The user can modify artistic
choices at the word level without needing to learn technical skills
like animation programming, simply by steering Visual Lyrics’s
generations through natural language. In our user study, novices
with little to no animation experience created highly stylized videos
that accurately reflected song semantics, reporting high enjoyment,
a strong sense of exploration, and low manual effort.

We begin by examining existing lyric videos to distill a taxon-
omy of common stylization effects and to establish three design
guidelines that inform the development of our system. Given a
song, Visual Lyrics analyzes it to identify language and audio fea-
tures based on our taxonomy and generates matching code-driven
animations using HTML, CSS, and JavaScript. Visual Lyrics breaks
down the complex task of animated lyric video creation into three
stages: Planning, which determines which words to add stylization
effects to and what types of effects to use; Generation, which in-
volves conceptualizing the overall theme, creating image assets,
designing static layouts, and animating those layouts; and Valida-
tion, which implements feedback loops to ensure that each stage of
the generation process produces high-quality results. To enhance
the generation pipeline, we collected a dataset of code-driven cre-
ative text animations for retrieval-augmented generation, which
Wwe open-source.

In summary, this research contributes:

¢ A simple taxonomy of stylization effects in animated lyric
videos.

e Visual Lyrics, a proof-of-concept animated lyric video gen-
eration system capable of creating freeform and semantically-
matching animation effects with a text-driven interface.

e A dataset of 306 code-driven, creative text animations to
serve as inspirational examples during LLM code generation.

o A user study demonstrating the utility of Visual Lyrics for
novice users.

2 Related Work

This work draws on prior research in automatic music video gener-
ation, kinetic typography, and generative animation.

2.1 Automatic Music Video Generation

Researchers have explored the automatic generation of videos to
accompany music, enhancing the listening experience through
adding a visual component. Many works focus on adding images
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based on the lyrics. MusicStory [34] and Cai et al. [7] extracted
salient words (e.g., nouns) and queried online image repositories.
To establish visual coherence, Shin et al. [35] aligned visual content
with the song’s emotional tones. In this work, we create a visually
coherent concept for the entire lyric video, though going beyond
static images by also styling and animating the text displayed on
screen.

Another thread of research in this space addresses the technical
challenge of aligning lyrics with audio. Fujihara et al. [13] developed
an automatic lyrics-to-audio synchronization system and Goto et
al. [14] created the Songle platform for crowdsourcing lyric align-
ment. Recently, Ma et al. [30] introduced one of the first end-to-end
pipelines to automatically convert music videos (without lyrics)
into lyric videos. Most closely related to our work is TextAlive by
Kato et al. [20], which is among the first tools to offer interactive
authoring of lyric videos, animate text in sync with music. Kato and
Goto’s Lyric App [19] further provided environments for crafting
lyric-driven visuals. Both systems can produce excellent animation
effects, though because they primarily rely on manual authoring
by users, they have a steeper learning curve for novice users.

Our work builds on Kato et al’s efforts, with a focus on de-
veloping a complete end-to-end pipeline oriented towards novice
creators. We leverage the strong natural language understanding
and code generation capabilities of LLMs, enabling users to describe
animations in natural language and automatically synthesize flexi-
ble and creative animations beyond predefined motion algorithms
through code.

2.2 Kinetic Typography

Kinetic typography is a motion graphics technique where text is
animated to convey emotion, narrative, and emphasis beyond static
words. Early HCI researchers recognized its expressive power and
began developing tools to support authoring it. ActiveText [24] is
one of the first systems for authoring dynamic text, demonstrating
how text motion can enhance communication. Lee et al. developed
the Kinetic Typography Engine [23], which brought film-like visual
expressiveness to text. Its follow-up work, Kinedit [12], enabled
animators to apply presets for text motion in order to convey affect
in messages. However, these early systems were largely manual,
requiring designers to handcraft animations.

With the increasing popularity of video content, commercial
tools like Adobe Express [4] and Canva Magic Animate [3] offer
limited preset effects for animating content. Recent works by Li-
wenbhan et al., including Creating Emordle [40] and Wakey-Wakey
[41], have explored automated methods for animating words based
on design heuristics and by mimicking character motions, taking
into account the emotional qualities of words.

Building on previous insights from kinetic typography research,
our work draws on the expressive power of words to convey narra-
tive and emotional affect through an automated pipeline specifically
designed for lyric videos. Our approach considers both the audio
and language channels of music to generate animated kinetic ty-

pography.
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2.3 Generative Animation

Beyond text, our work connects to the broader field of generative
animation, which involves methods for producing moving visuals
from high-level inputs (e.g., sketching, text, or code). Early sketch-
based systems like K-Sketch [9] and Draco [21] allowed users to
sketch motion paths for objects, enabling algorithmic approaches
that bring static illustrations to life using kinetic textures and user-
guided input.

Artists and researchers have long experimented with using code
to generate visuals of unique styles. For example, Processing [33]
in the 2000s has enabled creative custom animations through pro-
gramming. The generated animations are highly flexible, as they
can include any arbitrary visual or animation effect defined by rules
or code. However, they typically lack automatic planning, requiring
users to manually create generative rules. Being unable to interpret
songs or lyrics, early music visualizers or demo-scene animators
often reacted mainly to audio amplitude or beats, less on lyrical con-
tent or higher-level music structures. The challenge for our work
is to combine the flexibility of code-driven animation generation
with an automated understanding of a song’s key features, using
code to generate animations that follow the semantics of lyrics and
vocals to create meaningful visual experiences.

Over the past year, several works have shown that LLMs are
capable of generating code for rendering animations, as seen in
works like Keyframer [39] and LogoMotion [29]. However, these
explorations focus on more constrained tasks, such as animating
static vector graphics (Keyframer) and logos (LogoMotion). In this
work, we explore generating visually cohesive sequences of expres-
sive kinetic text effects, images, and animations for entire songs,
end-to-end.

3 Design Goals

We follow the methodology by Agrawala et al. [5] to identify guide-
lines by examining animated lyric video tutorials and existing ex-
amples of animated lyric videos. Our analysis included 20 tutorials,
featuring those from tool creators such as Adobe (the developer
of After Effects), as well as from various artists. We examined 50
animated lyric videos sourced from YouTube with over 100 views
using keywords such as “animated lyric video,” “kinetic typography
video,” and “motion lyric video.” Researchers manually filtered out
videos that met any of the following exclusion criteria: (1) static
“karaoke-style” videos with only scrolling or highlighting text and
no creative stylization, (2) videos with significant audio-visual syn-
chronization errors, (3) videos where text was consistently illegible
due to poor contrast or occlusion, or (4) videos that were primarily
slideshow-style with minimal animation.

From this analysis, we distilled three design goals to inform the
development of Visual Lyrics. These guiding design goals include
analyzing both the language and audio channels of the music, sup-
porting a wide range of stylizations, and maintaining the readability
of the text.
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Word Type | Modality | Description
S Visual Language | Visually-concrete objects, such as
g diamond or heart.
=
Metaphor Language | Metaphors mapping to objects,
such as steel for strength.
Size Language | Size-related words, such as big or
= tiny.
2
S Color Language | Color-related words, such as gold
or red.
Emotion Language = Words with emotional attributes,
such as sweet or sad.
Energy Audio Words sung by the singer with a
louder/smaller volume.
o Motion Language | Motion-related words, such as
-g shake or bounce.
=
=
‘2 Pitch shift | Audio Words sung by the singer with a
< pitch shift upwards/downwards.
Elongation | Audio Words sung by the singer with an
elongated emphasis.
Vibrato Audio Words sung by the singer with a

vibrato.

Common Effect Example
N -

Image diqmond,

Image

Font size

Font color

Font family or color

Font size

Semantic animations

Vertical movement or

trail animations

Stretched or repeated
animations

N0000000ONG

Pulsing or distortion
animations

Table 1: Taxonomy of Word Stylizations in Animated Lyric Videos. We categorize ten different types of word stylizations across
language and audio modalities, showing how the semantic properties of words and vocals can be visually represented through

different properties ( Image , Visual , and Animation ). Each category includes a description of the word type, the visual

effect that is commonly used, and an example usage.

3.1 Taxonomy

In order to narrow down the scope of effects to support in our
pipeline, we first established a taxonomy to characterize and dis-
cover text stylization techniques of animated lyric videos. Specif-
ically, from the set of curated 20 tutorials and 50 lyric videos, we
adopted an inductive coding approach focusing on the stylized sub-
ject (e.g., lyrics or vocals) and stylization effect (e.g., font, image,
animation). We applied thematic analysis to structure the codes
into the list of common effects in Table 1.

Image refers to instances where editors add an additional sup-
porting graphic to the video, such as identifying visually-concrete
objects or metaphors that can be associated with objects. Visual
involves editors applying font stylizations to the words, such as
stylized font choice, font size, and font color. This is often used
for words related to size, color, emotional qualities, or depending
on the energy of the vocals (sung particularly loudly or quietly).

Animation refers to instances where editors animate the word
itself, such as words related to motion or words sung with spe-
cial vocal attributes like upwards or downwards pitch shift, word

elongation, and vibrato. For each word stylization technique, we
additionally marked whether the stylization effect was based on
languague or audio feature.

3.2 Design Goal 1: Analyze Audio and Language

A creative animated lyric video should identify interesting oppor-
tunities to add special stylizations to words. As illustrated in Table
1, these opportunities can arise from either the lyrical aspects (lan-
guage features) or the vocal elements (audio features) of the song.
Current animated lyric authoring tools predominantly focus on
the language aspect (see Section 2.2). For instance, some tools iden-
tify visually concrete words [34] or specific words with emotive
attributes [35]. In this work, we build on our identified language
and audio features from our taxonomy to develop a multimodal
analysis pipeline (see Section 4.2).

3.3 Design Goal 2: Support Diverse Stylizations

From reviewing past videos, we observed that the implementation
of creative stylization effects can span a broad range of techniques.
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These include altering the visual appearance of words in various
ways, applying custom animations, or creating new supporting
images (Table 1). Current tools primarily support preset effects
or focus on a single type of stylization, such as matching images
(Section 2.1), animating text (Section 2.2), or editing the visual
attributes of text [38]. In this work, we harness the rich flexibility
of code (e.g., CSS, JavaScript) to synthesize a diverse variety of
stylizations (see Section 4.3). To increase the quality of the code-
implemented stylization effects, we sourced a dataset of over 300
code-driven text animation effects (see Section 4.3.4).

3.4 Design Goal 3: Maintain Readability

While stylizing words with creative and expressive visuals and ani-
mations are appealing, ensuring the legibility of the text remains
crucial, and achieving a balance between the two is essential. Cur-
rent tools largely overlook this aspect, requiring users to manually
identify and correct readability errors. In this work, we implement
validations to automatically detect potential readability issues at
various stages of the generation process (see Section 4.4).

4 Visual Lyrics

We begin with a system walkthrough where we illustrate how a
user might use Visual Lyrics to produce an animated lyric video.
Following this, we describe the technical implementation of Visual
Lyrics, which consists of three primary components: Planning, Gen-
eration, and Validation (Figure 2). Planning involves preprocessing
the music and analyzing multimodal aspects of the vocals and lyrics
to extract relevant features. Generation includes conceptualizing
the overall theme, creating image assets, generating static layouts,
and animating these layouts. Validation encompasses quality checks
of outputs across the different stages of the generation pipeline.
To enhance the code generation output, we collected a dataset of
306 creative text animation code snippets for retrieval augmented
generation, which we open source.

4.1 System Walkthrough

Taylor is a content creator who wants to create an animated lyric

video for her friend’s song: “Jiggle Jiggle” [18].

4.1.1  Annotating Lyrics. To begin, Taylor opens the Visual Lyrics
interface and sees the Annotation Panel on the left, where the song’s
lyrics are transcribed line-by-line (Figure 1a). She notices that the
lyrics are automatically annotated with three types of annotations:
Image , Animation , and Visual . These annotations are gener-
ated by the system after analyzing both the song’s language and
audio features.

A word with an Image annotation suggests that she could add
an image to the animated lyric video to visualize the word. For ex-
ample, “car” — generate a car image. A word with an Animation
annotation suggests that she could animate the word itself to em-
phasize it. For example, “jiggle” — apply a “jiggling” animation.
A word with a Visual annotation suggests that she could apply vi-
sual stylizations to the word’s font attributes. For example, “red” —
change the word’s color to red. These annotations are editable, and
Taylor can add or remove different types of annotations throughout
the lyrics transcript to tailor to her creative preferences.
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4.1.2  Generating Animations. On the right, Taylor sees the Gen-
eration Panel. She notices that the panel is divided into sections,
with each section corresponding to a line of the lyrics. Each section
contains the animated scenes generated for each line of lyrics (Fig-
ure 1b) and also includes generated instructions on how the system
implements the stylization effects for each annotated word in the
scene (Figure 1c).

For example, Taylor notices that for the word “money”, which
she has annotated with an Image annotation, the system has
created an image generation prompt: “a single dollar bill”
and has also generated an image below it. Instead of a single dollar
bill, Taylor wants a larger pile of money, so she manually edits the
textbox toread “a huge stack of dollar bills” and regenerates
the image by clicking the image’s regenerate button.

In addition, Taylor notices that for the word “jiggle”, which
she has annotated with an Animation annotation, the system
has suggested an LLM-generated instruction for implementing it.
However, she doesn’t like it very much. She wants to try something
different and clicks on the instruction’s regenerate button. She ends
up liking the suggestion: “hop randomly in place as if on a
hot surface”.

Taylor reviews the various scenes corresponding to different
lyric lines to finetune the stylizations according to her preferences.
She does this by either regenerating instructions and images (akin
to pulling a slot machine) or manually editing the instructions box
(to exert her own creative input). She frequently switches between
interface panels, sometimes returning to the Annotation Panel to
modify the annotations, which are then reflected in the Generation
Panel for more precise edits. Additionally, she plays the entire
video to evaluate how the animated results look as a whole and
how they are synchronized with the music. Here is an example of
what Taylor’s final animated lyric video could look like. .

4.2 Planning

We first separate vocal and non-vocals in the music using the
Spleeter model [15]. We then transcribe the lyrics on the isolated
vocal track using WhisperX [6]. This transcription serves as the
foundation for two parallel annotation processes: audio annotations
and language annotations. Both audio and language annotations are
referenced in later stages of the pipeline to create stylization effects
that highlight the auditory properties of the vocals or semantics of
the language.

4.2.1 Audio Annotations. For audio annotations, we analyze the
audio characteristics of both the entire song and each word. At the
song level, we compute the average beats per minute (BPM) and
the average energy level. We determine BPM using onset detection
with a Butterworth low-pass filter [37] to reduce noise, then apply
peak analysis to identify beats. We determine the song’s average
energy by computing the Root Mean Square (RMS) energy with
overlapping windows of 2048 samples and a hop length of 512
samples [31].

At the word level, we identify four categories of special words
based on their audio properties:

e High/low energy words: Words that have an RMS energy
above/below a threshold.
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Figure 2: System Overview. The pipeline consists of Planning (music preprocessing and multimodal analysis to produce
augmented lyrics), Generation (conceptualizing overall theme, creating image assets, designing static layouts, and animating
layouts), and Validation (feedback loops for quality checks at different stages of Generation) to produce the final animated
lyric video.

P> W
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Ride it in my Fiat e ) | '

My money don't jiggle jiggie Luckily the seats go 60(% s/t rosos

Sipping some red red wine Six feet two compact I've got a knack to in my mind

Figure 3: Example results for different types of annotations. Top row shows Image annotations with generated supporting
images (fiat with car image, for sure with thumbs up image, no slack with an image of a pair of shoes). Middle row shows
Animation annotations with dynamic text animations (jiggle jiggle jiggling, back spinning backwards, it folds being

folded). Bottom row shows Visual annotations with creative typography (red red in red color, six feet two in tall compact
font, relax with a faded color gradient). More animated examples: https://visual-lyrics.github.io/#examples.

e Upward/downward pitch-shifted words: Words with large of windows with an energy above a threshold that spans
upward/download shifts in pitch. We first identify the fun- over 30% of the word’s duration.
damental frequency with the YIN algorithm [10] using win- e Vibrato words: Words with oscillating frequencies. We first
dows of 1024 samples and a hop length of 256 samples, then count pitch oscillations, then check if the oscillation fre-
detect words with upwards/downward pitch shifts between quency is in the range of 4Hz to 8Hz (i.e., typical vocal vibrato
start and end of words above a threshold. frequency [11]).

¢ Elongated words: Words with long sustained energies. We For each identified special word, we map it to a visual or anima-
first compute the RMS energy in windows of 512 samples tion effect (see Section 4.3). Specifically:

with 128 sample overlap, then identify continuous sequences o High/low energy words are emphasized with big/small text

(visual word).
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o Pitch-shifted words are emphasized with growing/shrinking
animation (animation word).

e Elongated words are emphasized with stretching animation
(animation word).

e Vibrato words are emphasized with oscillating growing and
shrinking animation (animation word).

4.2.2  Language Annotations. For language annotations, we use an
LLM (Anthropic Claude 3.7 Sonnet model) to identify three cate-
gories of special words from the lyrics (Table 1). These categories
were derived directly from our taxonomy analysis, where we ob-
served that professional creators consistently apply stylizations to
words with these specific semantic properties:

e Image words: Visually-concrete words that can be visualized
as physical objects (e.g., “sun” or “flower”) or metaphorical
concepts that can be visualized (e.g., steel for “strength” or
rose for “love”). We include metaphors because our taxonomy
analysis revealed that many image stylizations visualized
figurative rather than literal meanings.

e Animation words: Words related to motion (e.g., “jump” or

“spin” or objects strongly associated with movement (e.g.,

“waves” or “arrow”). Motion words were the most frequently

animated category in our analysis, as the semantic meaning

naturally translates to visual movement.

Visual words: Words that can be enhanced through font at-

tributes, including color (e.g., “blue” or “dark”), size (e.g.,

“big” or “tiny”), and emotional qualities that can be conveyed

through font choice or color (e.g., “happy” or “elegant”). This

category captures opportunities for typography-based em-
phasis without requiring animation or image generation.

We call the annotated lyric transcript the “augmented lyrics”. For
each identified special word in the augmented lyrics, the LLM then
generates an “idea prompt”. An idea prompt is a textual description
of an animation effect (if the annotation was of the type “animation”
or “visual”) or a visual description of an image that can be used
by a text-to-image model to generate a supporting image (if the
annotation was of the type “image”). For example, in Figure 1c,
Visual Lyrics generates the prompt “a stack of folded dollar bills”
for the word “money” in the lyric and the prompt “Elements wobble
back and forth with a sprint-like...” for the word “jiggle”. We use
these idea prompts later in the generation components to generate
supporting effects for these words.

4.3 Generation

Creating an animated lyric video consists of many interdependent
tasks, including conceptualizing an overall theme, creating image
assets, organizing text and images into layouts, and adding dynamic
animations to each element.

In Visual Lyrics, we adopted a multi-agent approach. We create
a separate LLM-based “agent” for each task, including the Creative
Director, the Illustrator, the Layout Designer, and the Animator.
Briefly, the Creative Director agent is responsible for conceptual-
izing an overall artistic vision for the lyric video (Section 4.3.1),
and for validating the outputs of the other agents (Section 4.4).
The Illustrator agent is responsible for creating image assets (Sec-
tion 4.3.2), the Layout Designer generates layout (Section 4.3.3), and
the Animator agent leverages a data-driven approach to generate
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animation codes for both text and background elements in the video
(Section 4.3.5).

4.3.1 Creative Director agent. The Creative Director agent estab-
lishes a theme specification for the entire animated lyric video to
ensure a consistent visual style and animation pace across animated
scenes. The Creative Director uses an LLM to take in the computed
song-level audio features (BPM and average energy level) and the
complete song lyrics as input and generates an overall mood de-
scription, color scheme (using HEX values), typography (using
Google Fonts), animation style description, and background style
description.

4.3.2  lllustrator agent. The Illustrator agent generates images for
words marked with image annotations. The Illustrator generates im-
ages using the FLUX.1 Schnell text-to-image model [22] with Low-
Rank Adaptation (LoRA) finetuning [16] on Apple emoji designs.
The FLUX.1 Schnell model is capable of generating high-quality
images with fast performance using only 4 steps. The LoRA fine-
tune allows FLUX.1 Schnell to generate emoji-style designs suitable
for animated lyric videos with minimal prompt engineering. The
lustrator then removes the backgrounds of the generated images
using ViTMatte [42].

4.3.3 Layout Designer agent. The Layout Designer agent generates
static layouts for each line of the lyrics (i.e., each line is a scene in
the animated lyric video). Given the augmented lyrics, the theme
specification, and the generated image assets, the Layout Designer
uses an LLM to generate a layout with HTML/CSS code, the Layout
Designer uses an LLM to generate a layout with HTML and CSS
code. It is worth noting that we chose to generate code instead of
asking the LLM to compose a layout using bounding-box coordi-
nates [27]. In our early implementations, we found that LLMs have
limited ability to generate correct numeric values for positioning,
which often results in layouts with misalignment and overlap issues.
Instead, HTML/CSS’s relative positioning and built-in responsive
layout system proved to be more robust. In addition, we can use
code to apply complex animation effects that involve depth and
physics properties to these layouts (Section 4.3.5).

4.3.4 Dataset for animation generation. Inspired by prior research
in retrieval augmented generation [26], we enhance the quality
of the LLM-generated code-driven text animations providing the
LLM with a collection of high-quality examples, handcrafted by
designers, to serve as inspiration. We collected 306 text animation
code snippets from CodePen [2], an online community for sharing
code snippets. These snippets were sourced from public “pens” and
were selected based on their implementation using HTML, CSS,
and JavaScript. The selection process was manually curated by the
researchers. We searched public pens using keywords such as “text
effects”, “text animation”, and “CSS text” Overall, the collected code
snippets are diverse and encompass a wide range of custom ani-
mations and visual stylizations (see Figure 4). Some of the most
frequently appearing keywords in their titles include “shadow”,
“3D”, “glitch”, “neon”, and “gradient”. Among collected code snip-
pets, some focus more on visual stylizations of static text, such as
neon glow retro style text, Lego-like 3D text, and metallic texture
text. Others focus on the animation of texts, such as text with liquid
physics-like behavior, disappearing text mimicking smoke, and text
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that appears to be written with handwriting. To enable effective
retrieval-augmented generation, each code snippet was annotated
with metadata including: (1) a natural language description of the
visual effect (e.g., “neon glow effect with flickering animation”), (2)
categorization tags aligned with our taxonomy (e.g., “glow;,” “color,”
“pulse”), and (3) the primary animation type (static stylization, loop-
ing animation, or triggered animation). During generation, the
Animator agent queries this dataset using the word’s annotation
type and idea prompt as search terms, retrieving the top-3 most
semantically similar examples (using CLIP text embeddings) to in-
clude as in-context examples for the LLM. The full dataset can be
browsed at https://visual-lyrics-dataset.vercel.app.

POR ART

Figure 4: Examples from our dataset of 306 creative text
animation code snippets collected from CodePen. See full
dataset: https://visual-lyrics-dataset.vercel.app.

4.3.5 Animator agent. The Animator agent adds animations to
the static elements and generates subtle animated background ele-
ments. Given a static layout, the augmented lyrics, and the theme
specification, the Animator uses an LLM to add animation effects
using HTML, CSS, and JavaScript code. In addition, the Animator
generates subtle decorative elements for the background, such as
animated gradients, 3D particles, and geometric shapes.

4.4 Validation

Throughout the Generation pipeline, we validate the outputs of
each agent with the Creative Director agent with feedback loops.

4.4.1 lllustrator Validation. For each image generated by the Illus-
trator agent, the Creative Director first uses LLaVA [28], a state-
of-the-art captioning model, to caption the images. The Creative
Director, then embeds both the original image generation prompt
and the LLaVA-generated caption using CLIP [32] and computes
their cosine similarities. CLIP encodes text into semantic embed-
dings. If the similarity is below a threshold, the Illustrator is asked
to regenerate a new image.

4.4.2 Layout Designer Validation. The Creative Director validates
the static layouts through heuristics that check for the following
constraints:

David Chuan-En Lin, Cuong Nguyen, Hijung Valentina Shin, Nikolas Martelaro

o All elements must be within visible bounds.

e All text must be readable (via OCR [36]) and not occluded
by other elements.

e Images should be appropriately sized (maximum 80% of con-
tainer height).

If the constraints are not satisfied, the Layout Designer is asked
to correct the layout.

4.4.3 Animator Validation. The Creative Director validates the
animated layouts through heuristics that check for the following
constraints:

o All elements must be within visible bounds.

e There should not be any non-renderable animation code.

o All text must be readable during the animations (via OCR
(36]).

e Images should have subtle animations (not static). This con-
straint was informed by our taxonomy analysis, where we
observed that static images in lyric videos often appeared
disconnected from the dynamic text elements, reducing vi-
sual cohesion. Professional creators consistently applied at
least minimal motion (e.g., gentle floating, slow scaling, or
soft pulsing) to embedded images to maintain visual rhythm
with the music.

If the constraints are not satisfied, the Animator is asked to
correct the animations

After the Creative Director approves the final animated layouts,
we obtain a sequence of animated lyrics that follows a cohesive
theme. Overall, Visual Lyrics generates creative animated lyric
videos with complementary images, word stylization, and dynamic
animation, driven by both audio and lyrical analysis, while main-
taining a consistent visual concept. Figure 3 shows some examples
created with Visual Lyrics. Please see animated examples here:
https://visual-lyrics.github.io/#examples.

5 User Study

We conducted a user study to understand how Visual Lyrics could
support novice creators in making animated lyric videos, its po-
tential to be integrated into their personal workflows, and identify
improvement areas.

5.1 Participants

We invited ten participants (P1-P10, 7 female and 3 male, aged 18
to 38) to participate in a one-hour user study. Participants were
recruited through postings on Slack channels at our institution and
by word-of-mouth. They had no prior exposure to the Visual Lyrics
system or concept before the study. The participants were novice
creators familiar with watching animated lyric videos (self-rated
familiarity y=4.00, 0=1.05 on a 5-point Likert scale from 1=low
familiarity to 5=high familiarity) but less familiar with creating
them (self-rated familiarity p=1.80, 0=1.48). During the study, par-
ticipants accessed Visual Lyrics through a web browser, shared
their screens, and verbally explained their actions and thoughts
(think-aloud).
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5.2 Measures

We asked participants to complete questionnaires to capture their
perceptions of creativity and usability while using Visual Lyrics.
We assessed creativity using the Creativity Support Index (CSI) [8],
which measures enjoyment, inspiration, exploration, expressive-
ness, immersiveness, and effort/reward trade-off. Usability was as-
sessed using the System Usability Scale (SUS) [25], which evaluates
perceived confidence, ease of learning, quality of integration be-
tween different components, ease of use, and likelihood of frequent
use. Additionally, we asked participants to rate the satisfaction of
their overall usage experience and the quality of the final results
they created. All questionnaire items were rated on a 5-point Lik-
ert scale (5=strongly agree, 1=strongly disagree). Furthermore, we
logged user interaction data, including when participants added
or removed annotations, regenerated stylization instructions, and
manually edited stylization instructions.

5.3 Procedure

5.3.1 Introduction (10 minutes). Participants provided informed
consent, completed a background questionnaire, and then received
an introduction to Visual Lyrics, as described in Section 4.

5.3.2  Reproduction Task (15 minutes). Participants were asked to
create an animated lyric video for the song “Jiggle Jiggle,” as de-
scribed in Section 4.1. They were given a brief that guided them
through the various components of the system to create the video.

5.3.3  Free Creation Task (20 minutes). Participants were asked to
freely explore Visual Lyrics and create an animated lyric video.
They could use their own song or choose from a selection of twelve
songs encompassing various artists and genres, including pop, hip-
hop, rap, disco, and electronica. For the diversity of songs used,
please see https://visual-lyrics.github.io/#examples.

5.3.4  Post-Study (15 minutes). Participants completed question-
naires that assessed their perceived sense of creativity, usability,
overall usage experience, and the quality of their final creation (see
Section 5.2). Additionally, participants completed a free-response
questionnaire asking about their overall experience of using Visual
Lyrics, whether they could see Visual Lyrics being integrated into
their personal workflows, and areas for improving the system.

5.4 Results and Discussion

All participants completed the reproduction and free creation tasks.
Participants were generally satisfied with the overall usage ex-
perience (u=4.40, 0=0.52, 5-point Likert Scale) and with the final
animations they created (y=4.50, 0=0.71), and suggested areas for
future improvements. Example videos can be viewed here.

5.4.1 Helping Novice Users Create Quality Animations. Participants
generally reported high ratings for usability measured with the Sys-
tem Usability Scale, including the quality of integration between the
tool’s different components (u=4.80, 0=0.42, 5-point Likert Scale),
ease of learning (1=4.60, 0=0.70), and ease of use (1=4.30, 0=0.95).
Overall, participants expressed that they were able to create
high quality animations with little manual effort: “I spent
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Figure 5: Usability ratings measured with SUS [25].

maybe a minute deciding [which] words to highlight in the cho-
rus... and the tool was good at getting creative animations that
probably would have taken me hours in CapCut (P2)”.

Participants commented that the dual interface design (Anno-
tation Panel and Generation Panel) supported a natural workflow:
“[I could use] the left panel for choosing what to emphasize and
the right panel for refining how those emphasizations looked (P8)”.
In particular, participants commented how the tool helped stream-
line the typically highly technical and fragmented process: “The
technical barrier to entry for animation is usually so high... I don’t
have to worry about finding compatible fonts, designing graphics,
or how to keyframe specific motion effects (P2)”. For improvement,
P3 suggested allowing users to edit the automatically generated
theme specifications. Similarly, P9 wished to be able to edit the
color theme selections.

The validation mechanisms were valuable for the novice partic-
ipants (Design Goal 3). P10 observed that “the built-in validation
[was] like having an expert designer looking over my shoulder”,
when the system adjusted animations to prevent the text from being
off-screen. P2 noted, “When I added too many image elements to
one video, [the tool automatically] adjusted their sizes and position-
ing to make sure that the text remained the main focus”. For future
extension, P5 suggested giving users control over the placement of
different elements in the animated scene, as well as the ability to
specify image movement, such as by sketching a motion path.

5.4.2  Supporting Flexible Prototyping of Diverse Stylizations. Par-
ticipants generally reported high ratings for creativity measured
with the Creativity Support Index, including enjoyment (=4.60,
0=0.70), inspiration (p¢=4.50, 0=0.53), exploration (u=4.30, 6=0.95),
and effort/reward tradeoff (1=4.70, 0=0.48). Overall, participants
expressed that the tool helped them quickly explore a di-
verse range of animations and often inspired them with new
ideas (Design Goal 2): “I was able to switch between [annotation]
types for the same word and quickly visualize completely different
results... fire as a flame image, as a red-orangish gradient text style,
as a flickering animation effect... I found myself deliberately ex-
perimenting just to see the possibilities of each approach (P7)”. To
enable greater flexibility, P2 suggested the ability to apply multiple
types of annotations to the same word for future work. Figure 6
shows a relatively equal distribution among the different added
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Figure 6: Usage Frequency of Annotation Types. All three types of annotations were added onto the Annotation Panel with
relatively equal frequencies, suggesting that all types of stylization effects are useful for creating a stylized animated lyrics video.

Users generally regenerated and manually edited Visual stylizations less, suggesting the strong code generation performance
of LLMs for creating visual effects, while generating images required a bit more manual prompt engineering/editing.
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Figure 7: Creativity support ratings measured with CSI [8].

annotation types, which may suggest that participants found value
in all types of stylizations, rather than relying solely on one type.
Participants were generally more satisfied with the automati-
cally generated visual stylizations, resulting in fewer regenerations
and less manual editing (Figure 6). We observed that participants
most commonly edited image instructions to add specificity, such
as changing “gold coin” to “a shimmering stack of gold
coins”. On the other hand, they primarily made animation edits to
modify intensity, such as changing “bouncing up and down” to
“bouncing gently up and down”. Our interaction logs show the
tool supporting different working styles among participants. Some
participants focused on first annotating the lyrics, then diving into
fine-grained editing (P2, P6, P8). Other participants had regular
alternations between annotating and editing (P5, P7, P10).
Participants felt that the automatically suggested annotations
were helpful in “overcoming a blank canvas (P10)”: “I like how the
lyric is auto-scanned and words are annotated already so there’s
some sort of example to start from (P3)”. In particular, the audio-
based annotation suggestions were appreciated by participants,
who noted that they led to unexpected discoveries (Design Goal 1),

such as the “oscillating animation of the word ‘heart’ matching
the oscillating voice of the singer [vibrato] (P9)”. P5 commented
that “this first layer of suggestions was helpful for scaffolding...
allowing [them] to begin the creation process confidently”.

6 Limitations and Future Work

There are several avenues for future work to improve Visual Lyrics.
First, the current system automatically generates theme specifica-
tions (color palette, typography, animation style) based on song
analysis, with limited user control over these global settings. Pro-
viding fine-grained control over global themes while maintaining
ease of use for novices presents a design tension. Future work could
explore tiered control mechanisms that allow advanced users to
customize global parameters while preserving the streamlined ex-
perience for beginners. Second, Visual Lyrics generates animations
on a per-lyric-line basis, which does not guarantee smooth visual
transitions between scenes or coherent narrative arcs across an
entire song. Professional lyric videos often employ visual motifs,
progressive reveals, or thematic buildups that span multiple lines
or sections. Extending the Creative Director agent to reason about
multi-scene narrative structures and implementing transition gen-
eration between scenes are promising directions for future work.
Third, our use of LoRA fine-tuning on emoji-style designs pro-
duces consistent, clean imagery well-suited for lyric video overlays,
but this approach constrains the artistic range to a particular aes-
thetic. Professional lyric videos exhibit diverse visual styles ranging
from photorealistic to hand-drawn to 3D-rendered. Future versions
could offer multiple LoRA models representing different artistic
styles, or leverage more flexible image generation approaches that
can match specified aesthetic directions. Fourth, our user study
focused on novice creators, which aligns with our primary design
goal of democratizing lyric video creation. However, understand-
ing how professional animators might appropriate Visual Lyrics
(for instance, as a rapid prototyping or ideation tool) could reveal
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Figure 8: Interaction logs of users suggesting that the tool supported different types of working styles across participants. Some
participants focused on first annotating the lyrics, then diving into fine-grained editing (P2, P6, P8). Other participants had
regular alternations between annotating and editing (P5, P7, P10).

additional design insights. Professionals might use the tool dif-
ferently, perhaps generating initial drafts to refine in traditional
software like After Effects, or using it to quickly explore creative
directions before committing to manual implementation. A compar-
ative study examining how professionals’ creative processes and
outcomes differ when using Visual Lyrics versus traditional work-
flows, and whether the tool could complement rather than replace
expert techniques, is an important direction for future research.
Fifth, a failure case of the current system is handling extremely
fast-paced songs, such as rapid rap tracks, where the animation
effect for a lyric line may not complete before transitioning to the
next line (example here). A potential direction for improvement
is to have a better understanding the song’s pace across different
segments and apply animation effects that adapt accordingly. For
instance, using shorter or more simplified animations for faster
sections. Sixth, another potential failure case of the current system
is when multiple vocal lines are sung at the same time. In these
cases, overlapping lyric texts can appear on top of one another and
can reduce readability (example here). For future work, we could
extend the pipeline to use vocal source separation to distinguish
between lead and background vocals and to prioritize displaying
the lyrics of the lead vocals. Seventh, we could conduct several

technical evaluations to assess different performance aspects of the
system, such as transcription accuracy and code-generation latency.
It’s worth noting that because the system’s components, such as
transcription and LLM-based generation, are modular, they can be
replaced or improved as the individual techniques improve over
time. Finally, the current implementation of animation effects oper-
ates at a per-lyric-line level, but extending it to support finegrained
word-level animations could make the resulting videos even more
dynamic and engaging. Since the system already uses WhisperX
[6] for transcription with word-level timestamps, this would be a
natural next step. However, as with fast-paced songs mentioned in
the first limitation, the system would also need to adapt animation
timing to ensure individual word animations are not cut off early.

7 Conclusion

This research presents Visual Lyrics, a proof-of-concept system for
generating animated lyric videos powered by a multimodal song
analysis and animation generation pipeline, and controlled with
an augmented text editor interface. Our key insight is to leverage
LLMs’ strong natural language understanding and code-generation
capabilities to create freeform, semantically-matching visual styl-
izations and animations for music lyrics. Feedback from novice
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users of Visual Lyrics demonstrated that the tool helped them cre-
ate high-quality animations using natural language with minimal
manual effort, and they were able to quickly explore a diverse range
of animations, many times being inspired by new ideas.

References

[9

=

[10

[11]
[12]

[13

[14

[15]

[16

[17]

[18]

[19]

[20]

[25

[26]

2025. Adobe After Effects. https://www.adobe.com/products/aftereffects.html
2025. The best place to build, test, and discover front-end code. https://codepen.
io/

2025. Bring your designs to life with Magic Animate. https://www.canva.com/
pro/animator/

2025. Design Made Easy - Adobe Express. https://www.adobe.com/express/
Maneesh Agrawala, Wilmot Li, and Floraine Berthouzoz. 2011. Design principles
for visual communication. Commun. ACM 54, 4 (2011), 60-69.

Max Bain, Jaesung Huh, Tengda Han, and Andrew Zisserman. 2023. Whis-
perx: Time-accurate speech transcription of long-form audio. arXiv preprint
arXiv:2303.00747 (2023).

Rui Cai, Lei Zhang, Feng Jing, Wei Lai, and Wei-Ying Ma. 2007. Automated music
video generation using web image resource. In 2007 IEEE International Conference
on Acoustics, Speech and Signal Processing-ICASSP’07, Vol. 2. IEEE, II-737.

Erin Cherry and Celine Latulipe. 2014. Quantifying the creativity support of
digital tools through the creativity support index. ACM Transactions on Computer-
Human Interaction (TOCHI) 21, 4 (2014), 1-25.

Richard C Davis, Brien Colwell, and James A Landay. 2008. K-sketch:
a’kinetic’sketch pad for novice animators. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. 413-422.

Alain De Cheveigné and Hideki Kawahara. 2002. YIN, a fundamental frequency
estimator for speech and music. The Journal of the Acoustical Society of America
111, 4 (2002), 1917-1930.

Fitton Music. 2025. Vibrato. https://www.fittonmusic.com/writing/noise/filtering/
vibrato.html.

Jodi Forlizzi, Johnny Lee, and Scott Hudson. 2003. The kinedit system: affective
messages using dynamic texts. In Proceedings of the SIGCHI conference on Human
factors in computing systems. 377-384.

Hiromasa Fujihara, Masataka Goto, Jun Ogata, and Hiroshi G Okuno. 2011. Lyric-
Synchronizer: Automatic synchronization system between musical audio signals
and lyrics. IEEE Journal of Selected Topics in Signal Processing 5, 6 (2011), 1252—
1261.

Masataka Goto, Kazuyoshi Yoshii, Hiromasa Fujihara, Matthias Mauch, and
Tomoyasu Nakano. 2011. Songle: A Web Service for Active Music Listening
Improved by User Contributions.. In ISMIR. Citeseer, 311-316.

Romain Hennequin, Anis Khlif, Felix Voituret, and Manuel Moussallam. 2020.
Spleeter: a fast and efficient music source separation tool with pre-trained models.
Journal of Open Source Software 5, 50 (2020), 2154.

Edward ] Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. 2024. A survey
on large language models for code generation. arXiv preprint arXiv:2406.00515
(2024).

Duke & Jones and Louis Theroux. 2022. Jiggle Jiggle. https://genius.com/Duke-
and-jones-and-louis-theroux-jiggle-jiggle-lyrics.

Jun Kato and Masataka Goto. 2023. Lyric app framework: A web-based framework
for developing interactive lyric-driven musical applications. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems. 1-18.

Jun Kato, Tomoyasu Nakano, and Masataka Goto. 2015. TextAlive: Integrated
design environment for kinetic typography. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems. 3403-3412.

Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and
George Fitzmaurice. 2014. Draco: bringing life to illustrations with kinetic
textures. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 351-360.

Black Forest Labs. 2024. FLUX. https://github.com/black-forest-labs/flux.
Johnny C Lee, Jodi Forlizzi, and Scott E Hudson. 2002. The kinetic typography
engine: an extensible system for animating expressive text. In Proceedings of the
15th annual ACM symposium on User interface software and technology. 81-90.
Jason E Lewis and Alex Weyers. 1999. ActiveText: a method for creating dynamic
and interactive texts. In Proceedings of the 12th annual ACM symposium on User
interface software and technology. 131-140.

James R Lewis. 2018. The system usability scale: past, present, and future. Inter-
national Journal of Human-Computer Interaction 34, 7 (2018), 577-590.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktaschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in neural information processing systems 33 (2020), 9459-9474.

[27]

[28

[29]

(30]

(31]

[32

(33]

[34

[36

[37

(38]

[39

S
=

[41

[42]

David Chuan-En Lin, Cuong Nguyen, Hijung Valentina Shin, Nikolas Martelaro

Jiawei Lin, Jiagi Guo, Shizhao Sun, Zijiang Yang, Jian-Guang Lou, and Dongmei
Zhang. 2023. Layoutprompter: awaken the design ability of large language models.
Advances in Neural Information Processing Systems 36 (2023), 43852-43879.
Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2024. Improved baselines
with visual instruction tuning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 26296-26306.

Vivian Liu, Rubaiat Habib Kazi, Li-Yi Wei, Matthew Fisher, Timothy Langlois,
Seth Walker, and Lydia Chilton. 2024. LogoMotion: Visually Grounded Code
Generation for Content-Aware Animation. arXiv preprint arXiv:2405.07065 (2024).
Jiaju Ma, Anyi Rao, Li-Yi Wei, Rubaiat Habib Kazi, Hijung Valentina Shin, and
Maneesh Agrawala. 2023. Automated Conversion of Music Videos into Lyric
Videos. In Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology. 1-11.

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric
Battenberg, and Oriol Nieto. 2015. librosa: Audio and music signal analysis in
python. SciPy 2015 (2015), 18-24.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
etal. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748-8763.

Casey Reas and Ben Fry. 2006. Processing: programming for the media arts. Ai
& Society 20 (2006), 526-538.

David A Shamma, Bryan Pardo, and Kristian ] Hammond. 2005. Musicstory: a per-
sonalized music video creator. In Proceedings of the 13th annual ACM International
Conference on Multimedia. 563—-566.

Ki-Ho Shin, Hye-Rin Kim, and In-Kwon Lee. 2016. Automated music video
generation using emotion synchronization. In 2016 IEEE International Conference
on Systems, Man, and Cybernetics (SMC). IEEE, 002594-002597.

Ray Smith. 2007. An overview of the Tesseract OCR engine. In Ninth international
conference on document analysis and recognition (ICDAR 2007), Vol. 2. IEEE, 629-
633.

Soundation. 2025. Butterworth Filter - The low pass filter. https://soundation.
com/audio-effects/butterworth-filter.

Maham Tanveer, Yizhi Wang, Ali Mahdavi-Amiri, and Hao Zhang. 2023. Ds-
fusion: Artistic typography via discriminated and stylized diffusion. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 374-384.

Tiffany Tseng, Ruijia Cheng, and Jeffrey Nichols. 2024. Keyframer: Empowering
animation design using large language models. arXiv preprint arXiv:2402.06071
(2024).

Liwenhan Xie, Xinhuan Shu, Jeon Cheol Su, Yun Wang, Siming Chen, and Huamin
Qu. 2023. Creating emordle: Animating word cloud for emotion expression. IEEE
Transactions on Visualization and Computer Graphics (2023).

Liwenhan Xie, Zhaoyu Zhou, Kerun Yu, Yun Wang, Huamin Qu, and Siming
Chen. 2023. Wakey-wakey: Animate text by mimicking characters in a gif. In
Proceedings of the 36th Annual ACM Symposium on User Interface Software and
Technology. 1-14.

Jingfeng Yao, Xinggang Wang, Shusheng Yang, and Baoyuan Wang. 2024. Vit-
matte: Boosting image matting with pre-trained plain vision transformers. Infor-
mation Fusion 103 (2024), 102091.


https://www.adobe.com/products/aftereffects.html
https://codepen.io/
https://codepen.io/
https://www.canva.com/pro/animator/
https://www.canva.com/pro/animator/
https://www.adobe.com/express/
https://www.fittonmusic.com/writing/noise/filtering/vibrato.html
https://www.fittonmusic.com/writing/noise/filtering/vibrato.html
https://genius.com/Duke-and-jones-and-louis-theroux-jiggle-jiggle-lyrics
https://genius.com/Duke-and-jones-and-louis-theroux-jiggle-jiggle-lyrics
https://github.com/black-forest-labs/flux
https://soundation.com/audio-effects/butterworth-filter
https://soundation.com/audio-effects/butterworth-filter

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automatic Music Video Generation
	2.2 Kinetic Typography
	2.3 Generative Animation

	3 Design Goals
	3.1 Taxonomy
	3.2 Design Goal 1: Analyze Audio and Language
	3.3 Design Goal 2: Support Diverse Stylizations
	3.4 Design Goal 3: Maintain Readability

	4 Visual Lyrics
	4.1 System Walkthrough
	4.2 Planning
	4.3 Generation
	4.4 Validation

	5 User Study
	5.1 Participants
	5.2 Measures
	5.3 Procedure
	5.4 Results and Discussion

	6 Limitations and Future Work
	7 Conclusion
	References

